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Abstract—Single image haze removal has been a challenging 

problem due to its ill-posed nature. In this paper, we propose a 

simple but powerful color attenuation prior for haze removal from 

a single input hazy image. By creating a linear model for modeling 

the scene depth of the hazy image under this novel prior and 

learning the parameters of the model with a supervised learning 

method, the depth information can be well recovered. With the 

depth map of the hazy image, we can easily estimate the 

transmission and restore the scene radiance via the atmospheric 

scattering model, and thus effectively remove the haze from a 

single image. Experimental results show that the proposed 

approach outperforms state-of-the-art haze removal algorithms in 

terms of both efficiency and the dehazing effect. 

 
Index Terms—Dehazing, defog, image restoration, depth 

restoration 

 

I. INTRODUCTION 

utdoor images taken in bad weather (e.g., foggy or hazy) 

usually lose contrast and fidelity, resulting from the fact 

that light is absorbed and scattered by the turbid medium such as 

particles and water droplets in the atmosphere during the 

process of propagation. Moreover, most automatic systems, 

which strongly depend on the definition of the input images, fail 

to work normally caused by the degraded images. Therefore, 

improving the technique of image haze removal will benefit 

many image understanding and computer vision applications 

such as aerial imagery [1], image classification [2-5], 

image/video retrieval [6-8], remote sensing [9-11] and video 

analysis and recognition [12-14]. 

Since concentration of the haze is different from place to 

place and it is hard to detect in a hazy image, image dehazing is 

thus a challenging task. Early researchers use the traditional 

techniques of image processing to remove the haze from a single 

image (for instance, histogram-based dehazing methods 

[15-17]). However, the dehazing effect is limited, because a 

single hazy image can hardly provide much information. Later,  
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Fig. 1.  An overview of the proposed dehazing method. Top-left: Input hazy 

image. Top-right: Restored depth map. Bottom-left: Restored transmission 

map. Bottom-right: Dehazed image. 

 

researchers try to improve the dehazing performance with 

multiple images. In [18-20], polarization-based methods are 

used for dehazing with multiple images which are taken with 

different degrees of polarization. In [21-23], Narasimhan et al. 

propose haze removal approaches with multiple images of the 

same scene under different weather conditions. In [24, 25], 

dehazing is conducted based on the given depth information. 

 Recently, significant progress has been made in single 

image dehazing based on the physical model. Under the 

assumption that the local contrast of the haze-free image is 

much higher than that in the hazy image, Tan [26] proposes a 

novel haze removal method by maximizing the local contrast of 

the image based on Markov Random Field (MRF). Although 

Tan's approach is able to achieve impressive results, it tends to 

produce over-saturated images. Fattal [27] proposes to remove 

the haze from color images based on Independent Component 

Analysis (ICA), but the approach is time-consuming and cannot 

be used for grayscale image dehazing. Furthermore, it has some 
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difficulties to deal with dense-haze images. Inspired by the 

widely used dark-object subtraction technique [28] and based 

on a large number of experiments on haze-free images, He et al. 

[29] discover the dark channel prior (DCP) that, in most of the 

non-sky patches, at least one color channel has some pixels 

whose intensities are very low and close to zero. With this prior, 

they estimate the thickness of haze, and restore the haze-free 

image by the atmospheric scattering model. The DCP approach 

is simple and effective in most cases. However, it cannot well 

handle the sky images and is computationally intensive. Some 

improved algorithms [30-36, 45-51] are proposed to overcome 

the weakness of the DCP approach. For efficiency, Gibson et al. 

[31], Tarel et al. [45, 46], Yu et al. [32], and He et al. [43] 

replace the time-consuming soft matting [44] with standard 

median filtering, “median of median filter”, guided joint 

bilateral filtering [37-42] and guided image filtering,  

respectively. In terms of dehazing quality, Nishino et al. [48, 49] 

model the image with a factorial Markov random filed to 

estimate the scene radiance more accurately; Meng et al. [50] 

propose an effective regularization dehazing method to restore 

the haze-free image by exploring the inherent boundary 

constraint; Tang et al. [51] combine four types of haze-relevant 

features with Random Forest [52] to estimate the transmission. 

Despite the remarkable progress, the limitation of the 

state-of-the-art methods lies in the fact that the haze-relevant 

priors or heuristic cues used are not effective or efficient 

enough. 

In this paper, we propose a novel color attenuation prior for 

single image dehazing. This simple and powerful prior can help 

to create a linear model for the scene depth of the hazy image. 

By learning the parameters of the linear model with a supervised 

learning method, the bridge between the hazy image and its 

corresponding depth map is built effectively. With the 

recovered depth information, we can easily remove the haze 

from a single hazy image. An overview of the proposed 

dehazing method is shown in Figure 1. The efficiency of this 

dehazing method is dramatically high and the dehazing 

effectiveness is also superior to that of prevailing dehazing 

algorithms as we will show in Section VI. A conference version 

of our work has been presented in [53]. 

The remainder of this paper is organized as follows: In 

Section II, we review the atmospheric scattering model which is 

widely used for image dehazing and give a concise analysis on 

the parameters of this model. In Section III, we present a novel 

color attenuation prior. In Section IV, we discuss the approach 

of recovering the scene depth with the proposed color 

attenuation prior. In Section V, the method of image dehazing 

with the depth information is described. In Section VI, we 

present and analyze the experimental results. Finally, we 

summarize this paper in Section VII. 

II. ATMOSPHERIC SCATTERING MODEL 

To describe the formation of a hazy image, the atmospheric 

scattering model, which is proposed by McCartney in 1976 

[54], is widely used in computer vision and image processing. 

Narasimhan and Nayar [22, 23, 55, 56] further derive the model 

later, and the model can be expressed as follows: 

( ) ( ) ( ) (1 ( )),x x t x t x  I J A                         (1) 

( )( ) e ,d xxt                                   (2) 

where x is the position of the pixel within the image, I is the hazy 

image, J is the scene radiance representing the haze-free image, 

A is the atmospheric light, t is the medium transmission,   is 

the scattering coefficient of the atmosphere and d is the depth of 

scene. I, J and A are all three-dimensional vectors in RGB 

space. Since I is known, the goal of dehazing is to estimate A 

and t, then restore J according to Equation (1). 

It is worth noting that the depth of the scene d is the most 

important information. Since the scattering coefficient  can be 

regarded as a constant in homogeneous atmosphere condition 

[55], the medium transmission t can be estimated easily 

according to Equation (2) if the depth of the scene is given. 

Moreover, in the ideal case, the range of d(x) is [0, +∞) as the 

scenery objects that appear in the image can be very far from the 

observer, and we have: 

( ) , ( ) .x d x I A                                 (3) 

Equation (3) shows that the intensity of the pixel, which makes 

the depth tend to infinity, can stand for the value of the 

atmospheric light A. Note that, if d(x) is large enough, t(x) tends 

to be very small according to Equation (2), and I(x) equals A 

approximately. Therefore, instead of calculating the 

atmospheric light A by Equation (3), we can estimate A by the 

following equation given a threshold dthresold: 

( ) , ( ) .thresoldx d x dI A                               (4) 

We also notice the fact that it is not hard to satisfy this 

constraint: d(x)>dthresold. In most cases, a hazy image taken 

outdoor has a distant view that is kilometres away from the 

observer. In other words, the pixel belonging to the region with 

a distant view in the image should have a very large depth 

dthreshold. Assuming that every hazy image has a distant view, we 

have: 

( ) , { | : ( ) ( )}thresoldd x d x x y d y d x                   (5) 

Based on this assumption, the atmospheric light A is given by: 

( ), { | : ( ) ( )}.x x x y d y d x   A I                  (6) 

On this condition, the task of dehazing can be further converted 

into depth information restoration. However, it is also a 

challenging task to obtain the depth map from a single hazy 

image.  
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Fig. 3.  The process of imaging under different weather conditions. (a) The process of imaging in sunny weather. (b) The process of imaging in hazy weather. 

 

In the next section, we present a novel color attenuation prior 

which is useful for restoring the depth information from a single 

hazy image directly. 

III. COLOR ATTENUATION PRIOR 

To detect or remove the haze from a single image is a 

challenging task in computer vision, because little information 

about the scene structure is available. In spite of this, the human 

brain can quickly identify the hazy area from the natural scenery 

without any additional information. This inspired us to conduct 

a large number of experiments on various hazy images to find 

the statistics and seek a new prior for single image dehazing. 

Interestingly, we find that the brightness and the saturation of 

pixels in a hazy image vary sharply along with the change of the 

haze concentration. 

Figure 2 gives an example with a natural scene to show how 

the brightness and the saturation of pixels vary within a hazy 

image. As illustrated in Figure 2(d), in a haze-free region, the 

saturation of the scene is pretty high, the brightness is moderate 

and the difference between the brightness and the saturation is 

close to zero. But it is observed from Figure 2(c) that the 

saturation of the patch decreases sharply while the color of the 

scene fades under the influence of the haze, and the brightness 

increases at the same time producing the high value of the 

difference. Furthermore, Figure 2(b) shows that in a dense-haze 

region, it is more difficult for us to recognize the inherent color 

of the scene, and the difference is even higher than that in Figure 

2(c). It seems that the three properties (the brightness, the 

saturation and the difference) are prone to vary regularly in a 

single hazy image according to this observation.  

Is this coincidence, or is there a fundamental reason behind this? 

To answer this question, we first review the process of imaging. 

Figure 3 illustrates the imaging process. In the haze-free 

condition, the scene element reflects the energy that is from the 

illumination source (e.g., direct sunlight, diffuse skylight and 

light reflected by the ground), and little energy is lost when it 

reaches the imaging system. The imaging system collects the 

incoming energy reflected from the scene element and focuses it 

onto the image plane. Without the influence of the haze, outdoor 

images are usually with vivid color (see Figure  

 

(a)

(b)

(c)

(d)
 

Fig. 2.  The concentration of the haze is positively correlated with the difference 

between the brightness and the saturation. (a) A hazy image. (b) The close-up 

patch of a dense-haze region and its histogram. (c) The close-up patch of a 

moderately hazy region and its histogram. (d) The close-up patch of a haze-free 

region and its histogram. 

 

3(a)). In hazy weather, in contrast, the situation becomes more 

complex (see Figure 3(b)). There are two mechanisms (the 

direct attenuation and the airlight) in imaging under hazy 

weather [23]. On one hand, the direct attenuation caused by the 

reduction in reflected energy leads to low intensity of the 

brightness. To understand this, we review the atmospheric 

scattering model. The term J(x)t(x) in Equation (1) is used for 

describing the direct attenuation. It reveals the fact that the 

intensity of the pixels within the image will decrease in a 

multiplicative manner. So it turns out that the brightness tends to 

decrease under the influence of the direct attenuation. On the 

other hand, the white or gray airlight, which is formed by the 

scattering of the environmental illumination, enhances the 

brightness and reduces the saturation. We can also explain this 

by the atmospheric scatter model. The rightmost term A(1-t(x)) 

in Equation (1) represents the effect of the airlight. It can be 

deduced from this term that the effect of the white or gray 

airlight on the observed values is additive. Thus, caused by the 

airlight, the brightness is increased while the saturation is 

decreased.  Since the airlight plays a more important role in 

most cases, hazy regions in the image are characterized by high 

brightness and low saturation. What’s more, the denser the haze 
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is, the stronger the influence of the airlight would be. This 

allows us to utilize the difference between the brightness and the 

saturation to estimate the concentration of the haze. In Figure 4, 

we show that the difference increases along with the 

concentration of the haze in a hazy image, as we expected.     

Since the concentration of the haze increases along with the 

change of the scene depth in general, we can make an 

assumption that the depth of the scene is positively correlated 

with the concentration of the haze and we have: 

( ) ( ) ( ) ( ),d x c x v x s x                            (7) 

where d is the scene depth, c is the concentration of the haze, v is 

the brightness of the scene and s is the saturation. We regard this 

statistics as color attenuation prior. Figure 5 gives the geometric 

description of the color attenuation prior through the HSV color 

model. Figure 5(a) is the HSV color model, and Figure 5(b-d) 

are the near, moderate-distance and far scene depths, 

respectively. Vector I indicates the hazy image, passing through 

the origin and performing the projection of the vector I onto a 

horizontal plane Setting the angle between vector I and its 

projection as α, according to the HSV color model, when α 

varies between 0 and 90 degrees, the higher the value of α is, the 

higher the value of tangent α is, which indicates the greater the 

difference between the component of I in the direction of V and 

the component of I in the direction of S. As the depth increases, 

the value v increases and the saturation s decreases, and 

therefore α increases. In other words, the angle α is positively 

correlated with the depth. 

It is worth to point out that Equation (7) is just an intuitional 

result of the observation and it cannot be an accurate expression 

about the links among d, v and s. We will find the way to create 

a more robust expression in the following sections. 

IV. SCENE DEPTH RESTORATION 

A. The Linear Model Definition 

As the difference between the brightness and the saturation 

can approximately represent the concentration of the haze, we 

can create a linear model, i.e., a more accurate expression, as 

follows: 

0 1 2( ) ( ) ( ) ( ),d x v x s x x                           (8) 

where x is the position within the image, d is the scene depth, v is 

the brightness component of the hazy image, s is the saturation 

component, θ0, θ1, θ2 are the unknown linear coefficients, ε(x) is 

a random variable representing the random error of the model,  

and ε can be regarded as a random image. We use a Gaussian 

density for ε with zero mean and variable σ
2
 (i.e. ε(x) ~ N (0, 

σ
2
)). According to the property of the Gaussian distribution, we 

have: 

(a) (b)
 

Fig. 4. Difference between brightness and saturation increases along with the 

concentration of the haze. (a) A hazy image. (b) Difference between brightness 

and saturation.  

v

s

2

2( )xI

100%

50%

0%

50%
0%

100%

3

v

s

100%

50%

0%

50%
0%

100%

3( )xI

(a)

(c) (d)

1

v

s

100%

50%

0%

50%
0%

100%

1( )xI

(b)

 
Fig. 5. The geometric description of the color attenuation prior. (a) The HSV 

color model. (b) The near scene depth condition. (c) The moderate-distance 

condition. (d) The far scene depth condition. 

 

2 2

0 1 2 0 1 2( ) ~ ( ( ) | , , , , ) ( , ).d x p d x x N v s              (9) 

 One of the most important advantages of this model is that it 

has the edge-preserving property. To illustrate this, we calculate 

the gradient of d in Equation (8) and we have: 

1 2 .d v s                                     (10) 

Due to that σ
 
can never be too large in practice, the value of ε(x) 

tends to be very low and close to zero.  In this case, the value of 

▽ε is low enough to be ignored.  A 600╳450 random image ε 

with σ=0.05 and its corresponding gradient image ▽ε are  
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(a) (b) (c) (d) (e)
 

Fig. 6.  Illustration of the edge-preserving property of the linear model. (a) The hazy image. (b) The Sobel image of (a). (c) The Sobel image ▽d =▽v-▽s+▽ε. (d) 

The Sobel image of (e). (e) The random image ε with σ = 0.05. 

 

shown in Figure 6(e) and Figure 6(d), respectively. As can be 

seen, both the gradient image ▽ε and the random image ε are 

very dark.  It turns out that the edge distribution of d is 

independent of ε given a small σ. In addition, since v and s are 

actually the two  single-channel images  (the value channel and 

the saturation channel of the HSV color space) into which the 

hazy image I splits, Equation (10) ensures that d has an edge 

only if I has an edge. We give an example to illustrate this in 

Figure 6. Figure 6(a) is the hazy image. Figure 6(b) shows the 

edge distribution of the hazy image. Figure 6(c) shows the Sobel 

image ▽d =θ1▽v+θ2▽s+▽ε, where θ1 is simply set to 1.0, θ2 

is set to -1.0, and ε is a random image as mentioned. As we can 

see, Figure 6(b) is similar to Figure 6(c) representing that I and 

d have similar edge distributions. This further ensures that the 

depth information can be well recovered even near the depth 

discontinuities in the scene. The linear model works well as we 

will show later. 

In the following sections, we use a simple and efficient 

supervised learning method to determine the coefficients θ0, θ1, 

θ2 and the variable σ
2
. 

B. Training Data Collection 

In order to learn the coefficients θ0, θ1 and θ2 accurately, the 

training data are necessary. In our case, a training sample 

consists of a hazy image and its corresponding ground truth 

depth map. Unfortunately, the depth map is very difficult to 

obtain due to the fact that there is no reliable means to measure 

the depths in outdoor scenes. Current depth cameras such as 

Kinect are not able to acquire the accurate depth information.   

Inspired by Tang et al.’s method for preparing the training 

data [51], we collect the haze-free images from Google Images 

and Flickr and use them to produce the synthetic depth maps and 

the corresponding hazy images for obtaining enough training 

samples. The process of generating the training samples is 

illustrated in Figure 7. Firstly, for each haze-free image, we 

generate a random depth map with the same size. The values of 

the pixels within the synthetic depth map are drawn from the 

standard uniform distribution on the open interval (0, 1). 

Secondly, we generate the random atmospheric light A (k, k, k) 

where the value of k is between 0.85 and 1.0. Finally, we 

generate the hazy image I with the random depth map d and the 

random atmospheric light A according to Equation (1) and 

Equation (2). In our case, 500 haze-free images are used for 

generating the training samples (500 random depth maps and  
 

 
Fig. 7.  The process of generating the training samples with the haze-free 

images. (a) The haze-free images. (b) The generated random depth maps. (c) 

The generated hazy images. 

 

500 synthetic hazy images). 

C. Learning Strategy 

What we are interested in is the joint conditional 

concentration: 

2

1 1 0 1 2( ( ),..., ( ) | ,..., , , , , ),n nL p d x d x x x          (11) 

where n is the total number of pixels within the training hazy 

images,  d(xn) is the depth of the nth scene point, and L is the 

likelihood. Assuming that the random error at each scene point 

is independent (i.e. p(ε1,…, εn) = Пi=1,…,n p(εi)), we can rewrite 

Equation (11) as: 

2

0 1 2

1

( ( ) | , , , , ).
n

i i

i

L p d x x    


                 (12) 

According to Equation (9) and Equation (12), we have: 

0 1 2

2

( ( ) ( ))

2

2
1

1
,

2

i i idg v x s xn

i

L e

  





  




                  (13) 

where dgi represents the ground truth depth of the ith scene 

point. So the problem is to find the optimal values of θ0, θ1, θ2, 

and σ to maximum L. For convenience, instead of maximizing 

the likelihood directly, we maximize the natural logarithm of the 

likelihood lnL. Therefore, the problem can be expressed as 

follows: 

          
0 1 2

2

0 1 2

( ( ) ( ))

2

2, , , 1

1
arg max ln ln( ).

2

i i idg v x s xn

i

L e

  



    

  




     (14) 

To solve the problem, we first calculate the partial derivative of 

lnL with respect to σ and make it equal to zero: 

0 1 23
1

ln 1
( ( ( ) ( ))) 0.

n

i i i

i

L n
dg v x s x  

   


      


   (15) 

According to Equation (15), the maximum likelihood estimate 

for the variable σ
2
 is: 

                  2 2

0 1 2

1

1
( ( ( ) ( ))) .

n

i i i

i

dg v x s x
n

   


             (16) 
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As for the linear coefficients θ0, θ1 and θ2, we use the gradient 

descent algorithm to estimate their values. By taking the partial 

derivatives of lnL with respect to θ0, θ1 and θ2 respectively, we 

can obtain the following expressions: 

0 1 22
10

ln 1
( ( ( ) ( ))),

n

i i i

i

L
dg v x s x  

  


   


             (17) 

0 1 22
11

ln 1
( )( ( ( ) ( ))),

n

i i i i

i

L
v x dg v x s x  

  


   


   (18) 

0 1 22
12

ln 1
( )( ( ( ) ( ))).

n

i i i i

i

L
s x dg v x s x  

  


   


    (19) 

The expression for updating the linear coefficients can be 

concisely expressed by: 

                          
ln

: . . {0,1,2}.i i

i

L
s t i 




  


                  (20) 

It is worth noting that the expression above is used for iterating 

dynamically, and the notation: = does not express the 

mathematical equality, but means that setting the value of θi  in 

the left term to be the value of the right term. The procedure for 

learning the linear coefficients θ0, θ1, θ2 and the variable σ
2
 is 

shown in Algorithm 1.  

Algorithm 1 Parameters Estimation 

Input: the training brightness vector v, the training 

saturation vector s, the training depth vector d, and the 

number of iterations t 

Output: linear coefficients θ0, θ1, θ2, the variable σ
2
 

Auxiliary functions:  

function for obtaining the size of the vector: n = size(in) 

    function for calculating the square: out = square(in) 

Begin 

1: n = size(v); 

2: θ0 = 0; θ1 = 1; θ2 = -1; 

3: sum = 0; wSum = 0; vSum = 0; sSum = 0; 

4: for iteration from 1 to t do 

  5:     for index from 1 to n do 

6:         temp =  d[i] - θ0 - θ1 * v[i] - θ2 * s[i]; 

7:         wSum = wSum + temp; 

8:         vSum = vSum + v[i] * temp; 

9:         sSum = sSum + s[i] * temp; 

10:         sum = sum + square(temp); 

11:     end for 

12:     σ
2
 = sum / n;  

13:     θ0 = θ0 +wSum; θ1 = θ1 +vSum; θ2 = θ2 +sSum; 

14: end for 

End 

We used 500 training samples containing 120 million scene 

points to train our linear model.  There are 517 epochs in our 

case, and the best learning result is that θ0 = 0.121779, θ1 

=0.959710, θ2 = -0.780245, σ = 0.041337. Once the values of 

the coefficients have been determined, they can be used for any  

 

(a) (b)

(c) (d)
 

Fig. 8. Refinement of the depth map. (a) The hazy image. (b) The raw depth 

map. (c) The depth map with scale r=15. (d) The refined depth map. 

single hazy image. These parameters will be used for restoring 

the scene depths of the hazy images in this paper. 

D. Estimation of the Depth Information 

As the relationship among the scene depth d, the brightness v 

and the saturation s has been established and the coefficients 

have been estimated, we can restore the depth map of a given 

input hazy image according to Equation (8). However, this 

model may fail to work in some particular situations. For 

instance, the white objects in an image are usually with high 

values of the brightness and low values of the saturation. 

Therefore, the proposed model tends to consider the scene 

objects with white color as being distant. Unfortunately, this 

misclassification will result in inaccurate estimation of the depth 

in some cases. As shown in Figure 8, the white geese in the first 

image are the regions for which the model can hardly handle, 

and these regions are wrongly estimated with high depth values 

in the depth map (see Figure 8(b)). 

To overcome this problem, we need to consider each pixel in 

the neighborhood. Based on the assumption that the scene depth 

is locally constant, we process the raw depth map by: 

( )
( ) min ( ),

r
r

y x
d x d y


                           (21) 

where Ωr(x) is an r ╳ r neighborhood centered at x, and dr is the 

depth map with scale r. As shown in Figure 8(c), the new depth 

map d15 can well handle the geese regions. However, it is also 

obvious that the blocking artifacts appear in the image. To 

refine the depth map, we use the guided image filtering [43] to 

smooth the image. Figure 8(d) shows the final restored depth 

map of the hazy image. As can be seen, the blocking artifacts are 

suppressed effectively. 

In order to check the validity of the assumption, we collected a 

large database of outdoor hazy images from several well-known 

p h o t o  we b s i t e s  ( e . g . ,  G o o g le  Images ,  P ho to s ig ,  
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(a)

(b) (c)
 

Fig. 9. Example images and the calculated depth maps. (a) Outdoor hazy images. (b) The corresponding calculated depth maps. (c) Haze-free images and their 

calculated depth maps. 

 

Picasaweb and Flickr) and computed the scene depth map of 

each hazy image with its brightness and saturation components 

according to Equation (8) and Equation (21). Some of the 

results are shown in Figure 9. Figure 9(a) displays several 

outdoor hazy images, Figure 9(b) shows the corresponding 

estimated depth maps and Figure 9(c) gives the example 

haze-free images and their estimated depth maps. As can be 

seen, the restored depth maps have darker color in haze-free 

regions while having lighter color in dense-haze regions as 

expected. With the estimated depth map, the task of dehazing is 

no longer difficult. 

V. SCENE RADIANCE RECOVERY 

A. Estimation of the Atmospheric Light 

We have explained the main idea of estimating the 

atmospheric light in Section II. In this section, we describe the 

method in more detail. As the depth map of the input hazy image 

has been recovered, the distribution of the scene depth is known. 

Figure 10(a) shows the estimated depth map of a hazy image. 

Bright regions in the map stand for distant places. According to 

Equation (6), we pick the top 0.1 percent brightest pixels in the 

depth map, and select the pixel with highest intensity in the 

corresponding hazy image I among these brightest pixels as the 

atmospheric light A (see Figure 10(b) and Figure 10(c)). 

B. Scene Radiance Recovery 

Now that the depth of the scene d and the atmospheric light A 

are known, we can estimate the medium transmission t easily 

according to Equation (2) and recover the scene radiance J in 

Equation (1). For convenience, we rewrite Equation (1) as 

follows: 

 

 
Fig. 10. Estimation of the atmospheric light. (a) Our recovered depth map and 

the brightest region. (b) Input hazy image. (c) The patch from which our 

method obtains the atmospheric light. 

 

( )

(x) (x)
( ) .

( ) d x
x

t x e 

 
   

I A I A
J A A                 (22) 

For avoiding producing too much noise, we restrict the value of 

the transmission t(x) between 0.1 and 0.9. So the final function 

used for restoring the scene radiance J in the proposed method 

can be expressed by: 

( )

( )
( ) ,

min{max{ ,0.1},0.9}d x

x
x

e 


 

I A
J A                (23) 

where J is the haze-free image we want. Figures 12-13 show 

some final results of dehazing of the proposed method. 

Note that the scattering coefficient β, which can be 

regarded as a constant [55] in homogeneous regions, represents 

the ability of a unit volume of atmosphere to scatter light in all 

directions. In other words, β determines the intensity of 

dehazing indirectly. We illustrate this in Figure 11. Figure 11 

(e-g) shows the restored transmission maps with different β, and 

Figure 11 (b-d) shows the corresponding dehazing results. As 

can be seen, on the one hand, a small β leads to small 

transmission, and the corresponding result remains still hazy in 

the distant regions (see Figure 11(b) and Figure 11(e)). On the 

other hand, a too large β may result in overestimation of the 

transmission (see Figure 11(d) and Figure 11(g)). Therefore,  

A moderate β is required when dealing with the images with 

dense-haze regions. In most cases, β=1.0 is more than enough. 
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Fig. 11. Results with a different scattering coefficient β. (a) The hazy image. (b) The final result with β =0.5. (c) The final result with β = 0.8. (d) The final result with 

β = 1.2. (e) The restored transmission map with β = 0.5. (f) The restored transmission map with β = 0.8. (g) The restored transmission map with β = 1.2.  

 

(a) (b) (c) (d) (f)(e)
 

Fig. 12. Qualitative comparison of different methods on real-world images. (a) The hazy images. (b) Tarel et al.’s results. (c) Nishino et al.’s results. (d) He et al.’s 

results. (e) Meng et al.’s results. (f) Our results. 

 

VI. EXPERIMENTS 

In order to verify the effectiveness of the proposed dehazing 

method, we test it on various hazy images and compare with He 

et al.’s [29], Tarel et al.’s [46], Nishino et al.’s [49] and Meng et 

al.’s [50] methods. All the algorithms are implemented in the 

MatlabR2013a environment on a P4-3.3GHz PC with 6GB 

RAM. The parameters used in the proposed method are 

initialized as follows: r = 15, β = 1.0, θ0 = 0.121779, θ1 = 

0.959710, θ2 = -0.780245 and σ = 0.041337. For fair 

comparison, the parameters used in the four popular dehazing 

methods are set to be optimal according to [29], [46], [49] and 

[50]. 

A. Qualitative Comparison on Real-World Images 

As all the dehazing algorithms are able to get really good 

results by dehazing the general outdoor images, it is difficult to 

rank them visually. In order to compare them, we carry out the 

algorithms on some challenging images with large white or gray 

regions, since most existing dehazing algorithms are not 

sensitive to the white color. 

Figure 12 shows the qualitative comparison of results with 

the four state-of-the-art dehazing algorithms [29, 46, 49, 50] on 

challenging real-world images. Figure 12(a) depicts the hazy 

images to be dehazed. Figure 12(b-e) shows the results of  Tarel 

et al. [46], Nishino et al. [49], He et al. [29], and Meng et al. 

[50], respectively. The results of the proposed algorithm are 

given in Figure 12(f). As shown in Figure 12(b), most of the 

haze is removed in Tarel’s results, and the details of the scenes 

and objects are well restored. However, the results significantly 

suffer from over-enhancement (for instance, the sky region of 

the first image is much darker than it should be, and the faces of 

the women in the last image become brown). This is because 

Tarel’s algorithm is based on He et al.’s algorithm which has an 

inherent problem of overestimating the transmission as 

discussed in [29]. Moreover, halo artifacts appear near the 

discontinuities in Figure 12(b) (see the mountain in the first 

image and the leaves of plant in the second image) due to that 

the “median of the median filter” used in [46] is not an 

edge-preserving filter. The results of Nishino et al.  

Jacob John
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Fig. 13. Results on stereo images where the ground truth solutions are known. (a) The hazy images. (b) Tarel et al.’s results. (c) Nishino et al.’s results. (d) He et al.’s 

results. (e) Meng et al.’s results. (f) Our results. (g) Ground truth. 

 

have a similar problem as Nishino et al.’s algorithm tends to 

over enhance the local contrast of the image. As we can observe 

in Figure 12(c), the restored images are oversaturated and 

distorted, especially in the third image (the color of the shirt is 

changed to dark).  

In contrast, the results of He et al. are much better visually 

(see Figure 12(d)). The dense haze in the distance can be well 

removed, and there are no halo artifacts. Nevertheless, color 

distortion still appears in the regions with white objects such as 

the shirt in the third image. The reason can be explained as 

follows: As the method of recovering the transmission used in 
[29] is based on the dark channel prior, the accuracy of the 

estimation strongly depends on the validity of the dark channel 

prior. Unfortunately, this prior is invalid when the scene 

brightness is similar to the atmospheric light, and the estimated 

transmission is thus not reliable enough in some cases. In 

addition, the atmospheric light is also an important factor for 

calculating the transmission in [29]. Therefore, in order to 

obtain the correct transmission, an accurate estimation of the 

atmospheric light is required. However, the approach for 

estimating the atmospheric light proposed by He et al. has its 

limitation and the estimated result is an approximate value as 

discussed in [29]. For this reason, He et al.’s algorithm is prone 

to overestimating the transmission. 

Meng et al.’s results are close to those obtained by He et al. 

as displayed in Figure 12(e). This is due to the fact that, 

although Meng et al. improve the DCP approach [29] by adding 

a boundary constraint, it does not address the problem of 

ambiguity between the image color and haze. 

 

Compared with the results of the four algorithms, our results 

are free from oversaturation. As displayed in Figure 12(f), the 

sky and the cloud in the images are clear and the details of the 

mountains are enhanced moderately. 

B. Qualitative Comparison on Synthetic Images 

In Figure 13, the five algorithms including the proposed one 

are tested on the stereo images where the ground truth images 

are known.  Figure 13(a) shows the hazy images which are 

synthesized from the haze-free images with known depth maps.  

The  results  of  the  five  algorithms  are shown in Figure 13(b-f). 

Figure 13(g) gives the ground truth images for comparison. 

These haze-free images and their corresponding ground truth 

depth maps are taken from the Middlebury stereo datasets 

[57-61]. It is obvious that Tarel et al.’s results are quite different 

from the ground truth images as the results are much darker (see 

the toy with red hair in the dolls image and the books in the 

books image in Figure 13(b)). By observing the images in 

Figure 13(c), we can find that Nishino et al.’s results have a 

similar problem. For example, the color of the toys in the dolls 

image is changed into yellow, and the color of background in the 

moebius image is darker. He et al.’s results are more similar to 

the ground truth images but still show some inaccuracies (see 

Figure 13(d)). Note that the background in the books image is 

darker than it should be. Similarly, Meng et al.’s results also 

suffer from over-enhancement as shown in Figure 13(e). It is 

obvious that the color of the mask in the cones image is far from 

that in Figure 13(g). In contrast, our  
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Fig. 14. Mean squared error (MSE) of different algorithms. 

 

results do not have the problem of oversaturation and maintain 

the original colors of the objects (see Figure 13(f)). 

C. Quantitative Comparison 

In order to quantitatively assess and rate the algorithms, we 

calculate the mean squares error (MSE) and the structural 

similarity (SSIM) [62] of the results in Figure 13 for comparison. 

The MSE of each result can be calculated by the following 

equation: 

2

{ , , }

1
,

3

c c

c r g b

e
N

J G


                          (24) 

where J is the dehazed image, G is the ground truth image, J
c
 

represents a color channel of J, G
c
 represents a color channel of 

G, N is the number of pixels within the image G, and e is the 

MSE measuring the difference between the dehazed image J 

and the ground truth image G. Note that J and G have the same 

size since they are corresponding with the hazy image I. Given J 

and G, a low MSE represents that the dehazed result is 

satisfying while a high MSE means that the dehazing effect is 

not acceptable. 

We further show the MSEs of the results produced by 

different algorithms in Figure 14. As can be seen, Nishino et 

al.’s results produce the highest MSEs overall. The high MSEs 

are mainly because of the over-enhancement as mentioned 

earlier.  Tarel et al.’s results outperform Nishino et al.’s in the 

first three images while they perform worse in the books images. 

Meng et al.’s results rank third in terms of the total performance.  

The total MSE of He et al.’s results is 0.0167,  

 

 

Fig. 15. Structural similarity (SSIM) of different algorithms. 

 

which is more than twice smaller than the other three. In 

contrast, our method achieves the lowest MSEs in all cases. 

The structural similarity (SSIM) image quality assessment 

index [62] is introduced to evaluate the ability to preserve the 

structural information of the algorithms. A high SSIM 

represents high similarity between the dehazed image and the 

ground truth image, while a low SSIM conveys the opposite 

meaning. Figure 15 shows the SSIM of the results in Figure 13. 

The SSIMs of Nishona et al.’s results are all lower than 0.7 

indicating that much structural information in the images has 

been lost. Tarel et al.’s SSIMs are similar to those of Meng et 

al., but neither of them can go to 0.8. It is obvious that the 

SSIMs of He et al. are much higher than the other three in the 

four images. Our results achieve the highest SSIMs 

outperforming the four algorithms. 

D. Complexity 

Given an image of size m×n and radius r, the complexity of 

the proposed dehazing algorithm is only O(m×n×r), when the 

linear coefficients θ0, θ1, θ2 in Equation (8) are obtained. In 

Table I, we give the time consumption comparison with He et al. 

[29] (accelerated by the guided image filtering [43]), Tarel et al. 

[46], Nishino et al. [49] and Meng et al. [50]. As we can see, our 

approach is much faster than others and achieves efficient 

processing even when the given hazy image is large. The high 

efficiency of the proposed approach mainly benefits from the 

fact that the linear model based on the color attenuation prior 

significantly simplifies the estimation of the scene depth and the 

transmission.  

TABLE I 

TIME CONSUMPTION COMPARISON WITH HE [29], TAREL [46] , NISHINO [49] AND MENG [ 50]. 

Image 

Resolution 

He et al.’s 

method [29] 

Tarel et al.’s 

method [46] 

Nishino et al.’s 

method [49] 

Meng et al. ’s 

method [50] 
Our method 

441 450  9.866s 4.141s 91.661s 6.171s 1.420s 
600 450  12.228s 8.229s 104.670s 4.468s 

2.219s 

1024 768  36.896s 69.294s 317.386s 10.231s 4.278s 

1536 1024  73.571s 218.033s 649.722s 17.334s 9.636s 

1803 1080  90.717s 351.139s 861.360s 21.567s 12.314s 
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VII. DISCUSSIONS AND CONCLUSION 

In this paper, we have proposed a novel linear color 

attenuation prior, based on the difference between the 

brightness and the saturation of the pixels within the hazy 

image. By creating a linear model for the scene depth of the 

hazy image with this simple but powerful prior and learning the 

parameters of the model using a supervised learning method, the 

depth information can be well recovered. By means of the depth 

map obtained by the proposed method, the scene radiance of the 

hazy image can be recovered easily. Experimental results show 

that the proposed approach achieves dramatically high 

efficiency and outstanding dehazing effects as well. 

Although we have found a way to model the scene depth with 

the brightness and the saturation of the hazy image, there is still 

a common problem to be solved. That is, the scattering 

coefficient β in the atmospheric scattering model cannot be 

regarded as a constant in inhomogeneous atmosphere 

conditions [55]. For example, a region which is kilometers away 

from the observer should have a very low value of . Therefore, 

the dehazing algorithms which are based on the atmospheric 

scattering model are prone to underestimating the transmission 

in some cases. As almost all the existing single image dehazing 

algorithms are based on the constant- assumption, a more 

flexible model is highly desired. To overcome this challenge, 

some more advanced physical models [63] can be taken into 

account. We leave this problem for our future research. 
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