Paper: John J., Sevugan P. (2021) Image Dehazing Through Dark Channel Prior and Color Attenuation Prior. In: Singh M., Tyagi V., Gupta P.K., Flusser J., Ören T., Sonawane V.R. (eds) Advances in Computing and Data Sciences. ICACDS 2021. Communications in Computer and Information Science, vol 1441. Springer, Cham. https://doi.org/10.1007/978-3-030-88244-0_15
Implementation of Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior.
folder structure:
------------------
Dehazing-Color-Attenuation/dehaze.py # main
To dehaze save your image file:
python3 dehaze.py vit_hazy.jpg # the output 'vit_hazy_dehazed.jpg' will be saved in the same folder
This program implement single image dehazing using dark channel prior.
folder structure:
------------------
Dehazing-Dark-Channel-Prior/dehaze.py # file to execute
To dehaze save your image file:
python3 dehaze.py image/city2_hazy.png # the output 'city2_hazy_dehazed.png' will be saved in the same folder
folder structure:
------------------
Hazing/FoHIS/const.py # define const
fog.py # main
parameter.py # all parameters used in simulating fog/haze are defined here.
tool_kit.py # some useful functions
Hazing/AuthESI/compute_aggd.py
compute_authenticity.py # main
guided_filter.py # some functions
prisparam_16_hazeandfog.mat # pre-trained model
Hazing/img/img.jpg # RGB image
imgd.jpg # depth image
result.jpg # simulation
python fog.py # the output 'result.jpg' will be saved in ../img/
python compute_authenticity.py # to evaluate 'result.jpg' in ../img/
.
├── custom_transforms.py
├── data
│ └── add_dataset_files.md # add NYU dataset here
├── dataset.py
├── depth-prediction.ipynb # run this notebook
├── imgs # put your own images here
├── model_utils.py
├── nn_model.py
└── plot_utils.py